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In this paper, we solve a class of optimal control problem where the objective
function given by the ratio of two integrals. We propose an alternative method for
computing effectively the solution of fixed-terminal-time, fractional optimal
control problems when they are given in non-linear forms. This method works well
when the nonlinearities in the control variable can be expressed as polynomials.
The essential of this proposal is the transformation of a non-linear, non-convex
optimal control problem into an equivalent optimal control problem with linear
and convex structure. The method is based on global optimization of polynomials
by the method of moments. With this method we can determine either the
existence or lacking of minimizers. In addition, we can calculate generalized
solutions when the original problem lacks of minimizers. We also present the
numerical schemes to solve some examples.
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INTRODUCTION

Optimal control problem and its various branches has
been much attention in long time. Fractional optimal
control problem as a form of such problems in various
classes has been studied. Fractional optimal control
problems in a particular form where the objective
functional is given by the ratio of two integrals, is
considered by Stancu-Minasian [1], Bhatt [2], in a more
general framework, by Miele [3] and on problems with
affine integrands and linear dynamics with respect to
state and control by Bykadorov et.al [4]. Despite the
simplicity of these problems, the standard optimal control
theory cannot directly be used to solve them. Stancu-
Minasian [1] suggested to face the general fractional
optimal control problem applying the Dinkelbachs
method [5, 6], which is used in fractional programming to
remove the denominator in the objective function.

Recently Meziat et al. [7] presented the method of
moments where it is based on moment problem for
solving the optimal control problem. Moment problem is
a very common problem in physics and engineering. The
characterization of sequences that are moments of some
measure is a basic problem in the theory of moments.
Moment problems occur frequently in spectral estimation
and in particular in speech processing, geophysics, sonar
and radar, and many other areas [8,9]. A one survey of
wide range of approaches to the moment problem and its
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application is in [10]. There are various approaches in
estimating the measure when we have a finite number of
moments. In this paper, the idea is to approximate the
measure by Dirac measure. When we use the method of
moments, the control variable need not be in the linear
form, because by using of moments the problem is
transformed to in linear form in term of control variable in
space of moments. Is the considered problem has
minimizer or not, is the important corollary of this
method.

The paper is organized as follows: Section 2
introduced fractional optimal control problems in a
particular form where the objective functional is given by
the ratio of two integrals. Some basic definition of
measures and moments appear in section 3. In section 4,
the modified problem is discussed. The computational
estimation of the solution by Computational treatment
title present in section 5. The conclusion remark appears
in sections 6.

MATERIAL AND METHODS

Problem Formulation

A general form of the optimal control where the
objective functional is given by the ratio of two integrals,
as bellow:
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Tf (t.x (t),u )t
J =minimize 2 @

[ox@,u@)dt
x'()=h(t.xt).u()

x(a)=x,

where the functions f,gand h can be represented as
polynomials in the control variable

FExOuE)=YatxOu' o,
9EXOUO) =X, XN Q).

ht,x(t)u)) = ici t,x (t)u'(t).
And we suppose that

Vvt e[a,b] j'g(t,x(t),u(t))>0

RESULTS

Measures and Moments

In this section we present some definitions of
measures and moments of [11-12] which use to method of
moments. Let X be a subset of R" and B(X) denotes the

Borel o-algebra.

Definition1: A signed measure is a function

#:B(X) >Ruw such that wu(g)=0 and u(UA; )= > u(Ay)
ieN ieN

for any pairwise disjoint A; eB(X).

Definition 2: A positive measure is a signed measure
which takes only none negative values.

Definition 3: A probability measure x on X is a
positive measure such that x(X)=1.

Definition 4: A Dirac measure at x=¢ denoted by
Sx=¢ 1 a probability measure such that

1 A
OA)= {o i“ee A

Remark 1: If M(X) denotes the Banach space of

signed measures supported on X, then a measure
#eM(X) can be interpreted as a function that takes any

subset of X and returns a real number.

Definition 5: Given a real vector xeR" and an

integer vectoraeN" , a monomial is defined as

x¥ =x1x52...x3n and the degree of the monomial is equal
to lal=X, 0 .
Definition 6: Given a measure zcu(X) , the real

number
Vo = [ X% p(dx) )]
X
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is called its moment of order aeN".

For example if x=(x,%)e X =R? , second order

moments are
Yoo =){ u(dx), Yio =){ xu(dx),

Yor = | Xpu(dx), yzo=XIXfu(dX),
Yin = [ XpXou()  Yor = | X3 p(dx)

The sequence (y,), €N “ is called the sequence of
moments of the measure x and given geN the
truncated sequence (Y, ), <q is the vector of moments of

degree q.

Remark 2: If y is the sequence of moments of a
measure u i.e. if identity (2) hold for all e N ", we say
that s a representing measure for y. A basic problem in
the theory of moments concerns the characterization of
sequences that are moments of some measure. Indeed a
measure on a compact set is uniquely determined by the
sequence of its moments.

Let P, e R[X ] denote the polynomials of degree at

most n, for given a sequence Y =(y,) ~ the Riesz
linear functional defined as bellow:
L, :RIX]1—>R

Where for B, =3 p x* eR[X] implies that
a
L,(P)=2p Yy, .

(P )iaj<n is the vector of coefficients of polynomial
P (X).

In other word the Riesz functional can be interpret as
an operator that linearizes polynomials.

Remark 3. If sequence y has a representing measure
uintegration of a polynomial P,(X) w.r.t uis obtained by

applying the Riesz functional L, on P (X )since

Ly(P)=Xpy =Xp, [x“u@dx)=

JZp xp(x) =[P, (x)u(dx)

Definition 7: The moment matrix of order n is the
matrix Mq(y) such that:

ly (P (y))=PaMq (Y)Pn

where p_is the vector of coefficients of R, (X) . For

example if x=(x ,x )eR?,

00

Yoo ¥V
Ml(y): leyZOyll
YoV Y

10

01 11
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Remark 4: The rows and columns of the moment
matrix are indexed by vectorsaeN", geN".

Inspection reveals that indeed the entry (a,) in the
moment matrix is the moment Yo By construction, the

moment matrix M, () is symmetric and linear in y.

In special case when X — R , we denote the moment
of order ieN as bellow

k
m =[x pu(dx)
X
Let m :{mk } be the sequence of moments of some

probability measure M with first element m =1 and let
M, (m) be the moment matrix of dimension ¢, which is

composed of all the sequence in R9*1 whose entries form
a positive semidefinite Hankel matrix [1,5].

The theory of moments identifies those sequence m
with
Mq (m) >0, that correspond to moments of some

probability measure 42 on R".

Modified problem

In this section we use method of Charnes and Cooper
and obtain modified problem of (1), for this work we let
1

e
[ 9t x(®),u®)

Therefore the problem (1) leads to the following
optimal control problem:

7/:

J =min yif (t,x (t),u(t))dt
X' =h(tx ©)u() ®
7-[at.x @.u)dt =1

x(@)=x,

With respect to the polynomial form of functions
f,g and h, so the Hamiltonian H of the optimal control
problem (2) must have a polynomial form in the control
variable u:

H:H(t,l,x,u):%ai(t,i,x)ui, 4
i-0
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Where N =max{n ,n ,n }. Thus, the global
minimization of Hin u:
N :
minH U)= Y qu', )
u

i=0

is a problem well suited to be solved by the method
of moments [13-14].The essentials of this method follow.

For solving non-convex polynomial programs like (5),
we can use the convex hull of the graph of the polynomial
H provided it be a coercive function, that is: ;>0 with
even i . We can describe such convex set in the following
way:

co(graph(H)) ={F{ (u,H(u)d su): 1 eP(R)} (6)

where P(R)stands for the family of all probability
Borel measures supported in the real line.

Theorem1 [15]: Let H@u) be an even degree,
algebraic polynomial whose leader coefficient ¢; is

positive, then we can express the convex hull of the graph
of H as given in (6).

To prove this result, apply the separation theorem of
convex analysis. Once we have characterized the convex
hull of the graph of H, we can obtain the set of all global
minima of H by noticing that:

argmin(H) c argmin(H. ) ,

where H, stands for the convex envelope of H
Since H is a coercive polynomial, notice that

co(graph(H)) = Epigraph(H, ).

Then, we can pose the global optimization problem
(6) as the following optimization problem defined in
probability measures:

min [ H(u)dz(u), %)
ueP(R) 5

whose solution is the family of all probability
measures supported in argmin(H). See [13].

Theorem 2: [15,16] When H is coercive, the set of
solutions of (7) is the set of all probability measures
supported in the set of global minima of H ,i.e. argmin(H).

Corollary 3: [15,16] When argmin(H) is the singleton
{u"} , the Dirac measure u" =8,+ is the unique solution of

(7).

Now we use the polynomial structure of the objective
function H in order to transform the optimization
problem (7) into the following optimization problem:

N
min > ojm
meM i=0
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where M is the convex set of all vectors in RN+
whose entries are the algebraic moments of a probability
measure supported in the real line. Although this
formulation seems very attractive due to the linear form of
the objective function and the convex structure of the
feasible set, it is still a theoretical formulation not very
useful if we do not properly characterize the feasible set
composed of moment vectorsM. However, this is
precisely the question of the classical Truncated
Hamburger Moment Problem. Its solution is easily
summarized as follows: the closure of M is composed of
all vectors in RN*lwhose entries form a positive semi
definite Hankel matrix [17-18]:

N
M ={(m;)iLeRM™, (mi.j)?

i,j=0
is positive semidefinite with my =1}.
This result allows us to transform the problem (7) into
the mathematical program:

N
min > o;m.
L EO M st (mg 2,20

O

which has the form of a semi-definite program. See
[20,23] for an introduction to conic and semi-definite
programming.

Theorem 4 [16]: When H is a coercive polynomial, the

set of solutions of (8) is the set of all vectors m”~ eRN*!

whose entries are the algebraic moments of some
probability measure supported in argmin(H) , which is a

finite set with N points at the most.

Corollary 5 [16]: When H is a coercive polynomial
with a unique global minimum u’, the program (8) has a

unique solution m"eRN*lcomposed by the algebraic
moments of the Dirac measure 5 - .

Thus, m; =(u")" , Vi =0,1,2,...,N..
Hence, the global minimization of the Hamiltonian H
can be formulated as:

~ N
minH (t, 4,x,u) = > o; (t, 4, X)m,
m i=0
N
st. (mi+j)ii2020 9)
m =1.
0
where the variables t,4 and p are fixed. Notice that
any solution m"(t,4,x) of (9) is composed of the algebraic
moments of some probability measure supported in

argmin(H(t, 4,x)) . Since argmin(H(t,4,x)) is finite,
m*(t,/l, X)
can be expressed as:
* N !
m :Z;/i (1,vi,vi2,...,viN) (20)
i=1
Where

argmin(H (t, 2,x))={v (t, 4,x),v,t, 4, X),...v  (t,4,X)}
with N'<N.

e NSIGEWNOINIIWEWERY hitp://sjmie.science-line.com/

Therefore, if argmin(H) is the singleton{u”(t,1,x)}, the
optimal control can be expressed as:
u 4, x)=m_(t,2,x),

because the entries of m*(t ,A,X) are the moments of

the Dirac measure & . In this work we will solve the

u (t,Ax)
non-linear, non-convex problem (1) by working out its
convex relaxation:

b n
min y[ > a (t,x)m (t)dt
m(t 2 i20 i i

Ny
X(t) =Y bi (t,X)mi (),

i=0

b
e tx)m @)dt=1, (11)
a
x(a):xa,

N
(m )2 >0 with m ()=1 Vte(a,b).

i+j=0 i,j=0 0

Theorem 6: Let us assume that u”(t) is a minimizer of
the optimal control problem (1), then the control vector
m'(t) given as

m () =u"©)’

is a minimizer of the formulation (11).

Thus, every minimizer of the convex formulation (11)

attains the infimum of the non-linear optimal control
problem (1).

Vi=01..N  (12)

Computational treatment

Now we focus on the computational estimation of the
solution of the formulation (11) as a non-linear
mathematical program. We take a discrete net of points

t0 ,'[1,t2,...,tI on the interval time [ab], a set of design

variables m(t ) intended to represent the control
variables meRN* and the variables X (t ) intended to
represent the state variables x<R". When the points t are

uniformly distributed on the interval [a,b], we obtain the
mathematical program:

-1 (r+Dh Ny
min > [ yXam (ndt
MX.”r=0 @  i=0 '
X =X n,
—Y— =2 =3b m (), Vvr=12.,l
h iZo i i
1-1 (r+l)h
Y [ yem (ndt=1, (12)
r=0 " i i
x (@) =x o
mo(r)zl vr=012,..,1
N
(m ()2 =0 vr=012..1
i+j=0 i,j=0
where h = —a is the uniform distance between the

discrete net points. In order to represent the matrix
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inequality condition as a set of non-linear inequalities, we
use the fact that all principal sub-determinants of a
positive semi-definite matrix are nonnegative [9]. Then,
the matrix inequality condition

N

(m ()7, =0 (13)

i,j=0
is expressed as a set of non-linear inequality constraints:

Dp(m(r))zo vp=L42,..,s , vr=01..,1

where D, is the explicit form of every principal sub-

determinant of the Hankel matrix in (13) and p is the
number of its principal sub-determinants. In this way, we
have transformed the optimal control problem (1) into a
non-linear mathematical program.

Notice that coefficients a ,bi and ¢, may depend on

x and t. In order to solve this kind of high-dimensional,
non-linear mathematical programs, we use Gams
software.

We explain in full detail some examples of non-linear
optimal control problems analyzed by the method of
moments proposed here.

Example 1: We illustrate the success of the method
proposed in this work by solving the following optimal
control problem:

}(u(t)—t)zdt
0
1

1+ [(x2(t) +u® (D) dt
0

J = min

X'(t) =1+t —t2 —x (t)+u?(t),
x(0)=0

Solution: Let y = 1 ,
1+ (X () +u? () dt
0

we obtain the following optimal control problem:

J = min y}(tz—ztu(t)mz(t))dt
0
X'(t) =1+t —t2 —x (t)+u?(t),
y+y}(x2(t)+u2(t))dt=o
0

x(0)=0

Its relaxed formulation (11) takes the form:

J = min y}(tz—Ztml(t)+m2(t))dt
0

e MOIVIGETRRTOTNIEOEIERY http://sjmie.science-line.com/

X'(t) =1+t —t? —x (t)+m_(t),
y+y}(x2(t)+m2(t))dt=o,
0

[1 m (t)
m () m ()
x (0) =0.

Next we write down this formulation as the discrete,
non-linear mathematical program:

]zo vt €[0,1]

=
J=min S p( (€22t m ¢ )+m ()
r=0 r r 1 r r

h
HESm2m e ) )5

X =X 5
rTH=1+t,_t, -xt )+m () Vr=12..1

1-1 2 ) h
7/+7/r§0( (X (tr)+m2(tr))+ (X (tr,l)+m2(tr,1)) )EZO,

[l m () J

e >0 vr=0,1..1,
m() mi)
x (0) =0.

By choose h=0.1, we obtain the value of objective

function as zero and the exact value of objective function
is equal 0.

Example 2: In this example we solve the following
optimal control problem in similar  way of previous

example:
}(x(t)—tz)zdt
min 0 ——
[2 () +u? () dt
0
x'(t) =u(t),
x (0) =0.

Solution: By means of method of moments we obtain
the following optimization problem:

T 4 a2 2
J=min ¥ y((t "—2t°x(t )+x°( ))
r:0 r r r r

P22 )+xPE ) )%

X
’—H:ml(tr),

vr=12,..1,
h

1-1 2 ) h
72 (OCE)+m, ¢ )+ 0, )+m ¢, )= =0,

[1 m () J

e >0 vr=0,1,..l,
m) mi)
x(0)=0
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By chooseh =% , we obtain the value of objective

function as zero and the exact value of objective function
is equal 0.

CONCLUSION

In this paper we consider a special type of optimal
control problem where the objective functional is given
by the ratio of two integrals. For obtain the optimal value
of objective function we use method of moments. By this
method the non-linear and non-convex optimal control
problem transform to a convex optimization problem in
moment space. Finally by use of GAMS software we solve
the optimization problem.
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