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Abstract

In this paper, we consider the step fixed-charge transportation problem where is
one of the most important problems in transportation research area. In the step
fixed-charge transportation problem due to the step function structure of the
objective function, we are faced with a ““NP- hard” problem. To tackle such an NP-
hard problem, we present Particle swarm optimization (PSO) and also with Genetic
Algorithm (GA) to compare them. The obtained results show the proficiency of GSA

comparison with GA.
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INTRODUCTION

Fixed charge problems arise in a large number of
production and transportation systems. Such FCPs are
typically modeled as 0-1 integer programming problems.
A special case of the general FCP is fixed charge
transportation problem [1,2]. The problem involves the
distribution of a single commodity from a set of supply
centers (sources) to a set of demand centers (destinations)
such that the demand at each destination is satisfied
without exceeding the supply at any source. The objective
is to select a distribution scheme that has the least cost of
transportation. Two kinds of costs are considered, a
continuous cost which linearly increases with the amount
transported between a source i and a destination j and a
fixed charge which is incurred whenever a nonzero
quantity is transported between source j and destination j.
The fixed charge may represent toll charges on a highway;
landing fees at an airport; setup costs in production
systems or the cost of building roads in transportation
systems. Depending on the specific applications, the
importance of the fixed charge in the model will vary.

Step fixed charge transportation problem (SFCTP) is
an extended version of the FCTP. The SFCTP in its
representation first was founded by Kowalski and Lev
[3,5]. In the SFCTP due to the step function structure of the
objective function, Kowalski and Lev [3-5] were dealing
with a “NP- hard” problem.

Mahmoodirad et al. [6] focus on a technique which
obtains a good solution of the SFCTP, where both the
fixed cost and the unit transportation cost from each
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origin to each destination, have been expressed as
generalized trapezoidal fuzzy numbers. To solve the
problem, they convert this problem into the fuzzy
transportation problem, and then, try to construct a fuzzy
coefficient matrix to finding a good solution for SFCTP, by
developing the earlier proposed formulae. Rajabi et al. [7]
formulated the SFCTP under uncertainty, particularly
when variable and fixed costs are given in fuzzy forms. In
order to solve the problem, they developed two meta-
heuristic algorithms, namely, simulated annealing
algorithm and variable neighborhood search for this NP-
hard problem.  Molla-Alizadeh-Zavardehi et al. [8]
considered the SFCTP and proposed two meta-heuristic, a
spanning tree-based genetic algorithm and a spanning
tree-based memetic algorithm for this problem. Molla-
Alizadeh-Zavardehi et al. [9] developed Genetic Algorithm
(GA) for the SFCTP and compared it with simulated
annealing.

Since the problems with fixed charges are usually NP-
hard problem, the computational time to obtain exact
solutions increases in a polynomial fashion and very
quickly becomes extremely long as the dimensions of the
problem increase [10]. In order to find the best solution,
we proposed the Particle swarm optimization (PSO).

The rest of the paper is organized as follows: in
Section 1, the SFCTP model is described. Then, the meta-
heuristics algorithm, PSO, is developed. Later,
experimental design is presented. In the next section,
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results and discussion is provided. Finally conclusions are
pointed out in the last section.

Step Fixed Charge Transportation Problem
The following notations are used to define the
mathematical model.

Set of indices:
/ set of suppliers (i=1,2,...,))
J set of customers (j=1,2,...,J)

Parameters:
S capacity of supplier i
d, capacity of customer
o cost of transporting one unit of product from

supplier i to customer |
A a certain amount of transporting from supplier i to
customer |

ky, fixed charge of transporting one unit of product
from supplier i to customer |
K. additional fixed cost when the transported units

exceeds a certain amount A;

Decision variables:

X quantity of product shipped from plant i to
customer j

b;, binaryvariable equalto 1if x; >0 andequalto0

otherwise

b;, binaryvariable equalto 1if x; >A; andequal to

0 otherwise
The mathematical model of the problem as follows [5]:

m n
Min Zz ZZZ(CU Xij + 5 Vi)
i1

n

s.t. inj =s;,

j=1

i=12,..,m,

j=12,..,n,

i=12,...m,j=L12..,n,
X >0,
otherwise

The fixed cost for route (i, j) is proportional to the
transported amount through its route. This consists of a
fixed cost kj; ; for opening the route (ij) and an additional

cost kj; , when the transported units exceeds a certain

amount A;; .
Thus,
£ =bij aKij 1 +bjj oKy 2,
where,
1, Xjj >0,
bij 1= Lo
0, otherwise
1, XIJ > AIJ y
bjj o = .
0, otherwise
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and kj; 1,Kjj »,9jj, Ay are nonnegative real numbers.

Note that fixed cost associated with route (i, j) has two
steps. It could have multiple steps, depending on the
problem structure. Without loss of generality, we assume
that the problem is balanced, that is:

m n
$s-3a,
i=1 j=1

if it be unbalanced, can by introducing a dummy source or a
dummy destination be converted to a balanced transportation
problem.

Note that, if allAj >min{s;,d;}, then the SFCTP
becomes a FCTP with a single fixed cost kj; ;. Also, in the
model (1), fij have two steps. It could have multiple steps,

depending on the problem structure. Despite its similarity
to a standard transportation problem, the SFCTP is
significantly harder to solve because of the discontinuity
in the objective function Z introduced by the fixed costs.

Particle Swarm Optimization

PSO is one powerful and widely used swarm
intelligence paradigm introduced by Kennedy and
Eberhart in 1995 for solving optimization problems [11].
This algorithm has been proposed through inspiration
from social behaviors of the individuals in bird and fish
swarms [4]. Individuals in the swarms are referred to as
particles, and each particle consists of D-dimensional
values. For a D-dimensional state, position and velocity
expressions of particle i are represented as follows.

X, =X, Xp}andV; ={§,.V}

Intelligent interaction among the swarm is provided
with best value of each particle (pbest) and best value of
all particles (gbest) until at the current iteration. For a D-
dimensional search space, pbest of particle i is represented
as  pbest ={P,,....,Py}, gbest is represented as
gbest ={G,,...,G,}. Since PSO will
procedures according to these values, pbest values for
each particle and the gbest value, which is the best value
for the entire swarm, should be kept. PSO consists of two
stages as beginning and calculation. In the beginning
stage, all particles are distributed randomly in the search
space within the determined boundaries. In calculation
stage, velocities and positions of the particles are
updated. Velocity of a particle is calculated as follows [111:

Vi (t+2) =V, (£) +c, R, (t)(pbest, (t) - X ; (t))

+¢,R, (t)(gbest t) - X, (t)),
where t is the generation number, V,(t)and

perform update

X, (t) represent the velocity and position of the i-th
particle, respectively; @ is termed inertia weight, ¢, and
c,are the acceleration coefficients, R,(t) and R,(t) are
two vectors randomly generated within [0,1]" , with n
being the dimension of the search space; pbest, (t) and
gbest, (t) denote the personal best of the i-th particle and

the global best of the swarm, respectively.
While the fact that acceleration coefficients take big
values causes the particles to move away from each other
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and separate, their taking small values causes limitation of After making the velocity updates, new fitness values
the movements of the particles, and not being able to  of the particles are calculated, and if necessary, pbest and
scan the solution space adequately [12]. gbest updates are performed, and the same procedure is

V .. @and V . parameters may be set for the velocity ~ continued until the stop criteria are provided.
values determined for each particle to prevent occurrence
of big changes on the particles or constant limit excesses. Experimental Design Instances
In this study, V__ and V . was set as 20% of the upper Molla-Alizadeh-Zavardehi et al. [8] generated random

instances to verify the effectiveness of their GA approach.
We use the same datasets except step cost in this paper.
To cover various types of problems, we considered several
levels of influencing inputs. First, we generated random
problem instances for m = 10, 15, 30, and 50 suppliers and

and lower limits. Inertia weight was added to PSO by Shi
and Eberhart in 1998 [13] to provide the balance between
exploitation and exploration:

Vit +1) =aV; (t)+c, R, (t)(pbest; (t) - X (t))

+C,R, (t)(gbest (t) - X; (1)), n=10, 15, 20, 30, 50, 100, and 200 customers, respectively.
Inertia weight controls effect of previous velocity =~ We considered both small-sized and large-sized problem
increases of the particles on the velocity value, and takes  instances, which was presented by the number of

part in providing the balance between global search and suppliers and customers. Seven different problem sizes,
local search. When the inertia weight takes large values, 10 x10, 10 x20, 15 %15, 10 x30, 50 x50, 30 x100 and 50
global search is more suitable and a small inertia weight %200 are considered for experimental study, which
facilitates local search. Shi and Eberhart [13] proposed a present different levels of difficulty for alternative solution
linearly decreasing inertia weight over the course of = methods. After specifying the size of problems in a given

search. Usually, max and min values are determined for instance, considering the significant influence of the fixed
inertia, too. In this study, inertia update is made as follows: costs to the solution for each size, four problem types (A-
Max,,, —iter D) are employed. For a given problem size, problem types

T Max. differ from each other by the range of fixed costs, which

iter

Wh M increases upon progressing from problem type A through
ere Max problem type D. The variable costs range over the discrete
and iter is the current iteration. New position values are  yalues from 3 to 8. The problem sizes, types,
obtained by adding the velocity updates determined by  syppliers/customers, and fixed costs ranges are shown in
the formula given in the following to the particles: Table 1 and 2.
X, t+) =X, t)+V, t+2),

refers to maximum number of iteration

iter

Table 1. Test problems characteristics.
Range of variable costs ‘

Problem Size Total Demand Problem Type Aj a a-v' aand
10x10 10,000 A 400 U3, 7) U, 1) U(0.25,1)
10x20 15,000 B 400 U3, 7) U, 1) U(0.25,1)
15x15 15,000 C 400 U3, 7) U, 1) U(0.25,1)
10x30 15,000 D 400 U@3,7) u(, 1) U(0.25, 1)
50x50 50,000

30x100 30,000
50x200 50,000

Table 2. Test problems characteristics.

Range of first fixed costs Range of second fixed costs \
a a-v' aand B a a-v' aand g
U(50, 200) U(o, 25) U(5, 25) U(50, 200) U(0, 25) U(5, 25)
U(100, 400) U(0, 50) U(10, 50) U(100, 400) U(0, 50) uU(10, 50)
U(200, 800) U(0, 100) U(20, 100) U(200, 800) U(0, 100) U(20, 100)
U(400, 1,600) U(0, 200) U(40, 200) U(400, 1,600) U(0, 200) U(40, 200)
Parameter Setting algorithms ran 3 times and Due to having different scale

The performance of the GA is generally sensitive to of objective functions in each instance the relative
the parameter setting which influences the search percentage deviation (RPD) is used for each instance. The
efficiency and the convergence quality. Twenty-eight test RPD is obtained by the following formula:
problems, with different sizes and specifications, are RPD = Algsol — Minsol % 100
generated and solved to evaluate the performance of the Minsol
presented algorithms. Where Algso and Mins, are the obtained objective

The instances are implemented using MATLAB on a value and minimum objective value found from both

PC with dual core Duo 2 2.8 GHz and 4 GB of RAM. All proposed algorithms for each instance, respectively. After
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obtaining the results of the test problems in different trial,
results of each trial are transformed into RPD measure.

RESULTS

We set searching time to be identical for both
algorithms which is equal to 1.5x (n + m) milliseconds.
Hence, this criterion is affected by both n and m. The more
the number of suppliers and customers, the more the rise
of searching time increases. We generated 20 instances
for each twenty eight problem type, summing to
28x20 =560 instances which are different from the ones
used for parameter setting to avoid bias in the results.
Considering 20 instances for each of the 28 problem type,
or 80 instances for each of the 7 problem sizes, for both
algorithms, the instances have been run 5 times and
hence, by using the RPD we deal with 400 data for each
algorithm. The averages of these data for each algorithm
and each instance are shown in Fig. 1.

—4—PSO

—k—GSA

1 2 3 4 5 6 7 8 9 10
Fig 1. Means plot for the interaction between each algorithm
and problem size.

In order to verify the statistical validity of the results,
we have performed an analysis of variance (ANOVA) to
accurately analyze the results. The point that can be
concluded from the results is that there is a clear
statistically meaningful difference between performances
of the algorithms. The means plot and LSD intervals (at
the 95% confidence level) for two algorithms are shown in
Fig. 2.

Since, we are to appraise the robustness of the
algorithms in different circumstances; the effects of the
problem sizes on the performance of both algorithms are
analyzed. The reciprocal between the capability of the
algorithms and the size of problems is illustrated in Fig. 1.

5.8

5.6

5.4

5.2

5.0

RPD

4.8

4.6 4

4.4

4.24

4.04 —1

PSO GA

Fig 2. Means plot and LSD intervals for the PSO and GA
algorithms.

CONCLUSION

In this paper, a real-world modeling of transportation
problem, namely, step fixed charge transportation
problem has been investigated. We have proposed a PSO
ALGORITHM to solve this NP-hard problem. In order to
evaluate the efficiency of proposed algorithm for solving
the problem, a plan is extended based on previous test
problems to generate random instances. We solved the
randomly generated problems by PSO and also with GA to
compare them. The obtained results show the proficiency
of PSO comparison with GA. Also, considering other well-
known meta-heuristics such as simulated Annealing and
variable neighborhood search or new ones such as
imperialist competitive algorithm is encouraged.
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