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Abstract

The efficient integrated scheduling of production and distribution in a supply
chain becomes a challenging problem as global companies move towards higher
collaborative and competitive environments. The problem is to determine both
production schedule and air transportation allocation in coordinated way. In order
to solve the given problem, a genetic algorithm (GA) and a Differential evolution
algorithm (DE) are developed. The two proposed algorithms have been examined
and tested on randomly generated instances. The experimental results show that
the effectiveness and robustness of the proposed DE algorithm are better than GA.

INTRODUCTION

The recent market globalization and merging
processes, the development of complex and tightly
integrated plants, have encouraged companies to
improve their efficiency and increase the planning and
scheduling technology not only focused on a plant level,
but extended to the optimization of the whole supply
chain (SC). Production and transportation operations are
the two most important operational functions in a SC. To
achieve optimal operational performance in a SC, it is
critical to coordinate these two functions and schedule
them jointly in a coordinated way.

The coordinated production and transportation
processes rely on inventory storing to buffer both
activities from each other. However, inventory costs and
the trend to operate in a just-in-time (JIT) manner are
putting pressure on firms to reduce inventories in their
transportation chain. Coordinating production and
distribution activities requires the consideration of
additional features. In our work, SC is illustrated in Fig. 1.
Within this SC, products are hold in inventory. For delivery
of customer’s order finished products are transported to
customers using air transportation to meet their due
dates. Due to heavy cost of missing a shipment in a
scheduled flight, coordination of production and air
transportation activities is critical. The earliness costs of
departure time may result from the need for holding the
customer’s order at the plant (warehouses, inventory cost)
or waiting cost or penalties at the airport. Delivery
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earliness (resp. tardiness) penalty is incurred if an order is
completed before its committed due date (resp. after its
committed due date). The delivery earliness penalties
could result from the need for warehouse in the retailer’s
stores. The delivery tardiness cost includes contract
penalties, customer dissatisfaction, loss of sales and
potential loss of customer goodwill due to late orders.

Supplier Distributor 7= Retailer .
\ /
. Manufacturer .
Customer
Supplier Distributor Retailer H
Customer
orrrrrrnenennnennennn IMEAALIONICOPE o >

Fig 1. Supply chain stages Integration

Optimization of the trade-off between production,
distribution, retailer's costs and customer service level is
the goal of the decision maker of such systems. So the
problem is to find a coordinated schedule that minimize
supply chain total cost which includes transportation,
plant, delivery earliness tardiness and departure time
earliness tardiness costs. We investigate two policies and
they are as such: first policy considers delivery tardiness
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and the second one assumes that no delivery tardiness is
authorized.

There are considerable numbers of researches in
production-distribution coordination. But all of them have
only given consideration to the coordination of
production scheduling and vehicle routing and no study
has been conducted on the coordination of production
scheduling and air transportation. Having reviewed the
literature we came to realize that no study has been
investigated in this field. Therefore, we were galvanized
into presenting a pioneer consolidated model in this area.
Also there are a few researches on synchronization of
production scheduling and air transportation scheduling.
In synchronization the overall problem is decomposed
into two coordinated tasks such that the first task is to
assign accepted orders to available flights' capacities to
minimize the total transportation and delivery earliness
tardiness costs. The allocation is restricted by plant such
that it should be balanced with plant capacity. The second
task is to determine orders sequence or completion time
to minimize plant and departure time earliness tardiness
costs.

Li et al. [7] studied the synchronization of single
machine assembly and air transportation considering
single destination. The overall problem is decomposed
into air transportation problem and single machine
assembly scheduling problem. They formulated two
problems and then presented a backward heuristic
algorithm for production of products in the single
machine environment. Li et al. [9] developed their
previous work to consider multiple destinations in the
distribution activity. Li et al. [10] demonstrated the
allocation of orders to flights have the structure of regular
transportation problem, while the scheduling of single
machine assembly problem is NP-hard. They also
proposed a forward heuristic and a then backward
heuristic for production scheduling [8]. Li et al. [11]
developed their previous work by considering parallel
machine assembly environment in production. The
problem was modelled as a parallel machine assembly
with only departure time earliness penalties or with no
tardiness policy. They also demonstrated the scheduling
of parallel machine assembly problem is NP-Complete
and a simulated annealing algorithm was presented to
determine the sequence of orders in parallel machine
problem.

Zandieh and Molla-Alizadeh-Zavardehi [21] extended
the proposed model by Li et al. [8] and proposed
Synchronized scheduling models considering due
window and two type flight capacities. Zandieh and
Molla-Alizadeh-Zavardehi [22] extended their work
considering  various  capacities  with  different
transportation cost and also charter flights (commercial
flights). Rostamian Delavar et al. [16] proposed a
coordinated production and air transportation scheduling
and two genetic algorithms are developed to solve the
problem. Due to the dependency of most meta-heuristic
algorithms on the correct choice of operators and
parameters, a Taguchi experimental design method is
applied to set and estimate the proper values of proposed
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algorithms parameters to improve their performance. In
this paper, we extended the works by Zandieh and Molla-
Alizadeh-Zavardehi [21] and [22] to coordination of these
two task in a single optimization model that include
various capacities, delivery tardiness, no delivery tardiness
and due window.

Also many papers about of production scheduling
and vehicle routing problem coordination in the case of
road transportation can be seenin [1,2,3,4,5,12,13,17,20].

The remainder of this paper is organized as follows.
The next section describes the problem’s details and
elaborates the mathematical formulation of our model.
The proposed GA and DE are explained in Sections 3.
Section 4, describes the computational results. Finally, in
Section 5, conclusions are provided and some areas of
further research are then presented.

MATERIAL AND METHODS

Mathematical model

The problem is modeled considering on the following
assumptions;

e The allocation of air transportation and
scheduling of production are for the accepted orders in
the previous planning period.

e Order fulfillment is achieved when the order
reaches the destination airport on time.

e There are several flights in the planning period
with different departure and arrival time and other
specifications such as capacity, cost, etc.

e Business processing cost and time, together with
loading time and cost for flights are included in the
transportation cost and transportation time.

e Local transportation transfers customer’s orders
from the production to the airport. Local transportation
time is assumed to be included in production time.

The model allocates orders to the existing
transportation capacities and determines the sequence
and completion time for the allocated orders in
production. This requires solving a scheduling problem to
ensure that allocated orders catch their flights so that
total cost of supply chain is minimized. The required
notation to present the model is as follows:

i,i''j,J'  The order/jobindex, i=12,...,N;
f,f The flightindex, f =12,... N:

k The destination index, k=12,...K:

D, The departure time of flight f at the local airport;

A The arrival time of flight f at the destination;

Q The quantity of order I;

a, The delivery earliness penalty cost (/unit/h) of
order I;

ik The delivery tardiness penalty cost (/unit/h) of
order i;

d. The due date of order i;

Des, The order i's destination;
des,  Theflight f's destination;
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Cap, The available tth type capacity of flight f
thatt=1..T; f=1..,F;

Te, The transportation cost for per unit product
when allocated to tth type capacity of flight f;

Ol The quantity of portion of order i allocated to
type t capacity of flight f;

P, The processing time of order j;

The completion time of order / job i;

The per hour earliness penalty of order / job i for
production;
P.p"  The position or sequence of order i p=1,..,N;

1if order i be in position p, 0 otherwise;

A The per hour plant costs (including machine cost,
operator wages and other production variable
costs which is completely related to the length of
working hours;

l, The idle time before order i in the schedule;

The maximum completion time of orders that is
equal to shut down time of shop;

LN A large positive number;

0 A number between (0, 1);

Li et al. [8, 10] defined two type capacities in each
flight with two different transportation cost. For extension
of their work and generating more realistic schedule we
assumed that in many industries, we may have only one
or more than two type capacities in each flight. Therefore,
we considered T type capacities by cap ,in the notation.

Also if for a given flight f, we have h type capacities,
Cap”that t=h+1...,T will be zero. The mathematical

programming formulation of the model is shown as
follow:

N F
TCy Qg + z Z a; *max(0,d; — A, ) * gy +
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t=1 f'=1

N
Z l‘liNC| :Cmax (9)
i-L
I,>0 i=1..,N (10)
Ui, {01} i=1..,N;p=1..,N (11)
q, =Non-negative integer variable (12)

The decision variables are q,C;, Ii,uip andC,__ . The

objective is to minimize total cost which consists of total
transportation cost for the orders allocated to type 1 to T
capacity, total delivery earliness tardiness penalties, total
departure time earliness penalties of jobs and plant cost.
Constraint sets (2) ensures that if order 1 and flight f have
different destinations, order I cannot be allocated to
flight f. Constraint sets (3) that the capacity 1 to T of flight f
is not exceeded. Constraint set (4) ensures that order i is
completely allocated. Constraint sets (5) and (6) state that
each job has to be assigned to a position, and each
position has to be covered by a job. Constraint set (7)
calculates completion time of jobs, considering inserted
idle times among jobs. Since all jobs must catch their
scheduled flights, constraint set (8) ensures that order
i catches all of its departure times or the completion time
of gur has to be less than or equal to their related flight
departure times allocated to g

Solution approach

Genetic Algorithm: Genetic Algorithm (GA)
proposed by Holland in the early 1970s, as a stochastic
global search method based on principles of evolution
theory. Its original idea comes from Darwinian’s evolution
theory. It is based on the idea of “survival of the fittest,”
which repeats evaluation, selection, crossover, and
mutation after initialization until a stopping criterion is
satisfied [14].

In GA there are some chromosomes (The solution to a
problem is called a chromosome) which play the role of a
set of values for independent variables as a solution for
the problem. In each iteration (called generation), there
are three basic genetic operations, such as selection,
mutation and crossover, then applied one after another to
obtain a new generation of chromosomes in which the
expected quality over all the chromosomes is better than
that of the previous generation. This process is repeated
until the termination criterion is met, and the best
chromosome of the last generation is reported as the final
solution [19].

Selection: In the model, we want to minimize the
objective function. Because in Roulette-Wheel we give
more chance to the solution which has greater fitness
value, we consider the fitness value as follow:

Fitness Value =1/Objective Function
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Considering inverse objective function as a fitness
value, the greater fitness value a solution has, the more
chance it has to be selected.

Genetic operators

Reproduction: With more probability, better parents
can generate better offspring, so it would be necessary to
transfer the best solutions of each generation to the next
one. Therefore, the pr% of chromosomes with the better
fitness values are copied to the next generation. This is
called reproduction.

Crossover: The main purpose of crossover is to
search the parameter space and hence is considered as
the most important operator in GA. The crossover
operator takes two chromosomes (parents) from the old
population and exchanges the next generation of their
structures to produced new offspring. There are wide
varieties of proposed crossover operations. The
commonly used crossover operators are one-point
crossover, Two-point crossover, Uniform crossover and
Arithmetic crossover.

Mutation: The mutation operator can be considered
as a simple form of a local search. The main purpose of
applying mutation is to avoid convergence to a local
optimum and diversify the population. The used mutation
operators in the literature are Swap Mutation, Big Swap
Mutation, Inversion Mutation, Displacement Mutation and
Perturbation mutation.

Differential evolution: Differential Evolution (DE) is a
very simple population-based global optimization
algorithm. This algorithm created by [18], whose main
objective is functions optimization.

DE starts with a number of populations of NP
candidate solutions, so-called individuals. The DE's main
strategy is to generate new individuals by calculating
vector differences between other randomly selected
individuals of the population. The subsequent
generations in DE are denoted by G =0,1,...,.G,,,, . It is

usual to denote each individual as a D-dimensional vector
Xie =X%guX%,i =12, ,NPcalled a target

vector. This algorithm uses four important parameters:
population size, mutation, crossover and selection
operators; there are different variants.

Initial population: Like other evolutionary
algorithms, DE works with a population of individuals
(candidate solutions) and this number never changes
during the optimization process. Normally the initial
population is randomly generated and the population will
be improved by the algorithm iteratively, through the
mutation, crossover and selection operators [15].

Mutation operator: According to the DE, after
initialization, it employs the mutation operator. The
mutation in DE is a distinct innovation. It is based on the
difference of different individuals (Solutions), to produce a
mutant vector V, ; with respect to each individual X,
in the current population. This main operation is founded

on the differences of randomly sampled pairs of solutions
in the population. For each target vector

Xis.1 =1 2,..., NP ,amutantvectorV, ; can be made

by the following mutation operators. In all types, the scale
factor F is a positive control parameter for scaling the
difference vector. The following mutation operator
proposed by Storn and Price [18].

Vie =X, o+ F(X ne — X r3,G)

Crossover operator

In order to increase the diversity of the perturbed
parameter vectors, crossover is introduced after the
mutation operation. Crossover operation is employed to
generate a temporary or trial vector by replacing certain
parameters of the target vector by the corresponding
parameters of a randomly generated donor vector. To get
each individual's trial vector,U, ., , crossover operation is

performed between each individual and its corresponding
mutant vector. The following crossover operator
proposed by Storn and Price [18]:

U Viicwa If Rand(j)<CR or j=Rand(i)
e T IX, e If Rand(j)>CRor j #Rand (i)

Where rand(j) is the jth evaluation of a random number
uniformly distributed in the range of [0,1], and rand(i) is a
randomly chosen index from the set {1, 2,..., N}L
CR €[0,1] is a crossover constant rate that controls the

diversity of the population. The more the value of CR, the
less the influence of the parent will be.

Selection operator

To generate the new individual for the next
generation, selection operation is performed between
each individual and its corresponding trial vector by the
following greedy selection criterion:

X :{Ui,eu if f(Ui,G+1) <f (Xi,e)v
17X, s otherwise,
where f is the objective function, and X, is the
individual of the new population.

Computational experiments

Instances

In order to evaluate the performance of the existing
algorithm based on GA and DE developed in this research
for solving the problem, a plan is utilized to generate test
data. Table 1 shown the experimental design. The data
required for the problem include the number of jobs,
flights and destinations. The values of common
parameters are used from Li et al [8]. The number of jobs N
ranges from 20 to 100, the number of flights F ranges from
4 to 20, and the number of destinations K ranges from 2 to
5. The problem size is determined by the number of jobs,
the corresponding number of flights, and the number of
destinations. The value of N is set equal to 5F for each
problem. The destination for each order and each ordinary
flight is generated from uniform distribution between 1 to
the number of destinations of the corresponding problem
configuration. Nine different problem sizes are considered
for experimental study.
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Departure time of each ordinary flight is generated
from a uniform distribution subject to its destination. The
total number of flights that have the same destination is
denoted by TFi. The corresponding flights are assigned to
an ordinary flight number FN;, which starts from 1 to TF.
Each flight's departure time is then generated using
uniform distribution from [24 * (FN¢ -1)/TF, 24 * FN¢ /TF].
Each flight's transportation time is given and set to be the
value of its destination number. The planning period is set
to 24 hours for the nine test problem sets. Orders due date
is drawn from uniform distribution. The earliest delivery
time of an order is the sum of processing time of the order
and air transportation time. Therefore, the range for an
order's due date is between Qi*p; + t; and 6(Q*pi + ti),
where Q*p; is the order’s processing time and t; is the air
transportation time to its destination. Initially, a number is

specified to every unit of each order as processing time,
using uniform [0.5, 1.5]. Due to 24 hours planning period,
problem’s size and orders quantity producing all of orders
might be impossible because total processing time of
entire orders must be less than 24 hours. Therefore the
upcoming method is acquired to modify the initial
processing times. Assuming that the plant is able to
produce 1.2 to 2 times of the total orders quantity in the
planning period [19], a random number between 1.2 and
2 is generated which indicates the plant’s production
capacity to produce orders totally. Then the processing
time adjustment rate is calculated as:

A = (XQ;p’)x uniform [1.2, 2]/24.

At the end, each initial processing time (p') is
transformed to modified processing time (p;) using A.

Table 1. Random problems generation

Problem parameter

Number of orders (N)

Values ‘

20, 30, 40, 50, 60, 70, 80, 90, 100

Number of flights (F)

4,6,8,10,12,14,16, 18,20

Number of destinations (K) 2,2,3,3,3,4,4,4,5
Order quantity(Q)) Uniform [50,200]
Order due date(d)) Uniform [1,6]*(Qi*pi+ti)
Order delivery earliness penalty cost (a;) Uniform [3,5]
Order departure time earliness penalty cost (a’) Uniform [3,5]
Order delivery tardiness penalty cost (8i) Uniform [5,8]
Order destination (Des;) Uniform [1,K]

Ordinary flight destination (des)

Uniform [1,K]

Ordinary flight departure time (D)

Uniform [24%(FN¢-1)/TFk, 24*FN¢/TFi]

The available 1st type capacity of ordinary flight f (Cap:s)

Uniform [200,800]

The available 2nd type capacity of ordinary flight f (Cap./)

Uniform [100,200]

(Tcir)

Transportation cost of per unit product allocated to 1st type capacity of ordinary flight

Uniform [60+20 dess, 80+20 desy]

(Tczr)

Transportation cost of per unit product allocated to 2nd type capacity of ordinary flight

Uniform [60+20 dess, 80+20 desy]

Transportation cost of per unit product allocated to its charter flight (8%)

Uniform [60+20 dess, 80+20 desy]

Ordinary flight arrival time(Ar)

Ds+ tf

Maximum departure time of charter flight for order i (MD))

di-ti

(p")

Uniform [0.5,1.5]

A

A=(ZQip')* uniform [1.2,2]/24

The unit product processing time of order i(pi)

pi=p"i/A

RESULTS

We set searching time to be identical for both
algorithms which is equal to 225 x (N + F + K)
milliseconds. Hence, this criterion is affected by both n
and m. We generated 20 instances for each nine problem
type, summing to 9 X 20 = 180 instances which are
different from the ones used for parameter setting to

% Transportation. Sci. J. Mech. Ind. Eng., 3 (4): 52-58.
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avoid bias in the results. Considering twenty instances for
each of the twenty eight problem type, or eighty
instances for each of the nine problem sizes, for both
algorithms, the instances have been run five times. Hence,
using the RPD we deal with 900 data for each algorithm in
each problem size.
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Since, we are to evaluate the robustness of the
proposed algorithms in different problem sizes; the effects
of the problem sizes on the performance of both GA and
DE are analyzed and compared. So, the averages of RPDs
for each algorithm in each seven problem size are
calculated. The interaction between the efficiency of them
and the size of problems is showed in Fig. 1. As can be
seen from the result figure, not only is the overall
performance of DE better than GA, but it is more robust.

4.3
3.8
3.3 - —
2.8 GA
——DE
2.3
1.8 T T T T T T T T
© o © o © © © © ©
N N N 0n N & S N
Y Y Y Y Y Y— Y— Y— Y
<t O 00 O N < VW o0 O
o o2 D =22 g
o (42] < o o o o o o
n (Vo] M~ 0 (o)} 8

Fig 1. Interaction between proposed algorithms and
problem size

CONCLUSION

This paper has considered both production schedule
and air transportation allocation in coordinated way. In
order to solve the given problem, two meta-heuristic
algorithms, namely Genetic Algorithm (GA) and
Differential Evolution (DE) algorithm, have been utilized.
Because of the dependency of these proposed algorithms
on the correct choice of parameters, various operators
have been employed.

The computational results have shown the superiority
of the DE algorithm in comparison with GA. There still
exist rich opportunities for researchers to further the study
in this area. For future research, it can be interesting to
investigate and develop new algorithms based on other
meta-heuristics and compare them with our algorithms.
Furthermore, we can use the response surface
methodology (RSM) for tuning the parameters of these
algorithms.
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